【导读】 手游加速器真的有用吗,下面是小编为你收集整理的,希望对你有帮助!手游加速器是有用的,手游加速器可以防掉线自动重连,还可以智能加速降延迟,针对游戏时WiFi、3G/4G等各种网络问题进行优化,防止掉线,让团战,PK,畅玩无阻。手游加速器是利用IDC资源,采用数据转发......
发布时间:2023-11-21 20:01:16
作者丨dwilimeth
编辑丨Camel
本文转载自知乎专栏:AutoML随笔
今天介绍一篇 ICLR 2020 的工作 Adversarial AutoAugment。作者是来自华为的 Xinyu Zhang, Qiang Wang, Jian Zhang, Zhao Zhong。
之前的那些 NAS 做数据增强的工作,例如 AutoAugment,算法流程大致是这样的:用强化学习训练一个 policy generator ,从样本空间中采样,产生大量的 policy 。每一个 policy 会对应一个做分类任务的子网络,子网络使用这个 policy 来做数据增强,在数据集上随机初始化训练完后,测一下验证集上的准确率作为强化学习的 reward 更新 policy generator。
本文作者指出,这样做存在的不足之处:
计算开销大,policy generator 要从样本空间中产生大量的 policy,每一个 policy 都对应一个从头开始训练的子网络,更新 policy generator 还必要要等到整个网络训练完。为了给 AutoAugment 加速,有一些方法会提出一些 proxy tasks,比如说用小模型在数据集的一个小的子集上面搜。但是这样做存在一个 proxy tasks 和原始的任务之间的 gap,在 proxy tasks 上面最优不能保证在原始任务上也是最优的;
在分类子网络训练的过程中,policy 是静态、一成不变的。这样做可能也不是最优的。
针对这些不足,本文就提出了一种新的方法,policy generator 和分类网络能同时并行训练;此外,在分类网络的训练过程中,还能动态调整 policy 。这种方法和 AutoAugment 相比,在 ImageNet 数据集上的计算开销减少了12倍,训练时间缩短了11倍。
怎么做到的呢?作者引入了 GAN 里面的“对抗”思想,引入了 adversarial loss。整个网络可以看做两部分:一个是 policy generator,优化目标是生成那些让分类器的分类 loss 最大的数据增强 policy;一个是分类器,优化目标是在给定 policy 之后对应的分类 loss 最小。
具体的网络结构如下图所示,就是一个分类网络 target network,和一个生成 policy 的 policy network。
在训练的过程中,policy network 会生成 M 个不同的 policy,并把这 M 个 policy 作用于相同的数据上,得到 M 个分类 loss,并更新分类网络 target network 的权重。而这 M 个分类 loss 也会收集起来,根据 Williams的REINFORCE算法拿来更新 policy network 的权重,目的是最大化分类 loss。如此迭代进行。
加入 adversarial loss 的好处可以看做是两方面:一方面是大大减少了训练所需的时间;另一方面,可以认为policy generator 在不断产生难样本,从而能帮助分类器学到 robust features,从而学的更好。
作者也可视化了学到的 policy ,如下图。可以看出随着 epoch 数量的增加,policy generator 会倾向于产生更难的数据增强 policy,如 TranslateX, ShearY and Rotate 这些几何转换会被更多使用。
作者的这种方法需要比较大的 batch size,一般来说大的 batch size + BN 能涨点,因此直接和 AutoAugment 比较似乎不太公平。针对这一点,如 table 4 所示,作者做了大 batch size + 随机搜索的对照实验,证明自己的搜索策略的有效性。
此外,作者也证明了搜到的 policy 具有很好的迁移性能。如下表所示,用 ResNet 50 在 ImageNet 上搜到的 policy,换到其他模型、其他数据集上也能有不错的结果。
个人感觉 NAS 和 adversarial loss 结合的这个 idea 是很巧妙的,在其他任务中也能借鉴。比如说搜 loss function 的时候用 adversarial loss 或许也能有不错的结果。
更多ICLR 2020信息,将在「ICLR 2020 交流群」中进行,加群方式:添加AI研习社顶会小助手(AIyanxishe2),备注「ICLR」,邀请入群。
ICLR 2020 论文解读系列:
钱姓排于百家姓中的第二位,虽然起源和来历并不多,但是钱姓人却分布广泛,成为了中国姓氏中的第二大姓。钱姓的主要来源就是彭祖的儿子篯孚,彭祖的真名叫做篯铿,是因为被尧封于大彭而得姓-彭,而他的儿子篯孚因为掌管着钱财,任职钱府上士,所以便为“钱”姓,所以彭钱是一家。...
发布时间:2024-09-20 20:03:27
胡服最早是由春秋战国时的赵武灵王-赵雍引入中原的,因为当时赵国的地形和地理位置都非常不好,常年深受战争威胁,加上赵武灵王继位之后,时局不稳,周边国家都想要攻打赵国,所以赵武灵王便下令让全员都推行胡服,并且学习骑射,相较于宽大的汉服更加便于行动。...
发布时间:2024-09-20 19:05:44
赛艇运动起源于英国的泰晤士河上,当时还是17世纪,英国泰晤士河上的船工在工作之余经常会举办一些赛船,久而久之就形成了一种习俗,在1715年的时候,为了庆祝英王的卫冕,所以第一次正式举办了赛艇比赛,最终在1775年发展为一个正式的运动项目,并且成立了相应的运动俱乐部。...
发布时间:2024-09-20 18:04:28
人们之所以不愿意或者不敢以“宸”为名,主要是因为在古时候“宸”有着“深邃的房屋”的意思,也就是专指皇帝的居住场所,象征着无上的权力,所以“宸”字自然也就成为了禁忌,不过现代人大多是害怕这个字的气势,普通人的命格扛不住。...
发布时间:2024-09-20 17:00:53
商细蕊是电视剧《鬓边不是海棠红》中的京剧名旦,很多人都为他和海归商人程凤台的知己故事而动容,但遗憾的是在历史长河中并没有商细蕊真正的原型,只能说他可能是作者根据历史上著名的京剧名旦构建的一个角色,因为他和梅兰芳、程砚秋、尚小云以及徐碧云等四人的经历和性格都有着极为相似之处。...
发布时间:2024-09-20 16:05:01
在中华上下五千年的历史长河中,除了王朝更替的政治生活与文化生活,还有一些美貌的女子点缀着历史的绘卷,那么在悠悠岁月中有哪些著名的美女呢?下面小编就来为大家盘点一下吧!...
发布时间:2024-09-20 15:04:04
谈及古代帝王,最让人津津乐道的当属那后宫佳丽三千,不过也不是所有的帝王都有那么充实的后宫,比如历史上有一位皇帝就只有一位妻子,是不是让人有点不敢相信,下面小编就带大家一起了解下吧!...
发布时间:2024-09-20 14:01:05
自古无情帝王家,说到帝王的爱情多是奢望,很多帝王后宫的妃子换了一个又一个,几乎都是薄情寡义的,但是漫长的历史长河中也有例外,有的皇帝便与众不同,特别的长情,下面小编来为大家介绍一下历史上最长情的皇帝吧!...
发布时间:2024-09-20 13:03:24
可以说人的成长伴随着无数的武侠剧,尤其是电视剧中的那些绝世高手更是让人影响深刻,有不少人小时候都幻想过可以武功盖世,一统江湖,那么有人知道武侠剧中有哪些绝世高手吗?下面小编为大家盘点一下吧!...
发布时间:2024-09-20 12:02:19
古装电视剧中有许多的美丽的女子,她们身着美丽的衣裳,一举一动摇曳生姿,美得让人挪不开双眼,可以说是一场视觉盛宴,下面就让小编为大家盘点一下那些古装美女吧!...
发布时间:2024-09-20 11:09:01
近年清朝古装剧收视率暴涨,这些电视剧不仅剧情引人入胜,身着清装的美人也同样吸引了不少目光,有着让人过目不忘的美貌,那么清朝古装剧中有哪些美人呢?下面小编就来为大家盘点一下吧!...
发布时间:2024-09-20 11:02:08
养龟市场上经常可以看到小青龟,这种乌龟乖巧可爱以及性情温顺,所以很多人都会选择小青龟来饲养,不过一直都是见到小青龟都比较小,这不禁令人好奇这种乌龟能长多大?下面小编就带大家一起了解一下小青龟吧!...
发布时间:2024-09-20 10:01:47